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ABSTRACT

The information age is transforming military operations by providing soldiers, marines,
sailors, and airmen with unprecedented quantities of information whose quality may vary from
low to high. The plethora of information has increased the demands on the humans in the
system, and this in turn has emphasized the need to understand how the user accrues the
information in an attempt to ameliorate the effects of the elevated level of demand. This
problem is enhanced when the information or evidence that must be accrued is susceptible to
uncertainty (G. G. Kuperman, personal communication, 1996). The current project involved the
characterization and analysis of uncertainty in evidence éccrual, which may result from
incomplete information, insufficient alternatives, or intentionally deceptive actions. The project
utilized fuzzy set theory to manage and measure the uncertainty associated with evidence
accrual. The Observe-Orient-Decide-Act (OODA) Loop was the cognitive model used to
represent the stages through which an individual progresses during evidence accrual. The first
two phases of the loop, which entail the initial sensing and management of information, were the

primary focus.
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INFORMATION WARFARE

Technological innovations begun in the 1970’s have facilitated extraordinary
improvements in methods for collecting, storing, analyzing, and transmitting information.
Nations, corporations, and individuals all seek to increase and protect their own store of
information while trying to limit and penetrate the adversary's. One way to characterize this area
in a broad sense is to say that information warfare (IW) includes “any action to deny, exploit,
corrupt, or destroy the enemy’s information and func:ions; protecting ourselves against those
actions; and exploiting our own military information functions” (Widnall & Fogleman, 1995).
Although the topic of IW seems to be of great interest, it does yet have a standard definition
within the military community (Szafranski, 1995). IW, a tool for promoting and maintaining
national security, can be described in the broadest sense as the use of information to achieve our
national objectives (Stein, 1995). Although technology has facilitated the explosion of this
technique, it is important to note that “...IW is fundamentally not about satellites, wires, and
computers, but rather about influencing human beings and the decisions they make through the

manipulation of pertinent information” (Stein, 1995).

What Is Information?

IW is intertwined with its root concept: information itself is derived from phenomena,
which include observable facts, events, and actions. Before they can be elevated to information
status, phenomena must be perceived and interpreted. Thus, the phenomena become information
through observation and analysis. Because the shift from phenomena to information is the result
of subjective perceptions and interpretations, the information that is received may vary widely
from one individual to another. Thus, the next important aspect of appropriate information
dissemination is the inclusion of useful instructions for interpretation. Information, then, is the
result of perceived phenomena (data) and the instructions required to interpret that data and
establish meaning. In the evidence accrual environment, the powers of observation are
surveillance and reconnaissance; the bases for the orientation of those observations are
intelligence and weather analysis. In the Air Force, the observations inform the decision makers

who must plan the Air Tasking Order (ATO) for subsequent command and control operations.




Information Warfare

War places special demands on the information functions of military operations. From
the individual soldier to the theater level of war, IW is the discovery and exploitation of
information. The goal is to seek, acquire, and protect information for personal benefit while
simultaneously withholding or altering the information the adversary can access during decision
making. IW consists of targeting the enemy's information and information functions, while

protecting one’s own, with the intent of degrading the enemy’s capability or will to fight.

Indirect vs. Direct IW

In the past, IW strategies typically relied on measures such as feints and deception to
influence decisions by affecting the decision maker's perceptions. That is, these strategies
influenced information through the perception process by attacking the enemy's information

indirectly. For the deception to be effective, the enemy must:

e observe the deception,
¢ analyze the deception as reality, and

® act upon the deception according to the deceiver's goals.

This process is referred to as indirect information warfare. Using military deception,
one could construct images of friendly forces, landscape differentials, and supporting evidence to
present a realistic and convincing image. Although many technological manipulations are
necessary for the success of this approach, it is important to remember that it ultimately relies on
the adversary’s observing the pseudo combat operation and interpreting it as real. Only then is it
successful IW. The following methods may be used to accomplish the goal of deceiving the

enemy with inaccurate sensory information:

* psychological operations that use information to affect the enemy’s reasoning

¢ celectronic countermeasures (ECM) that deny accurate information to the enemy
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e military deception that misleads the enemy about our capabilities, resources, or
intentions

e physical destruction of information system elements

e security measures that seek to prevent the adversary from learning about our military

capabilities and intentions.

In contrast to indirect IW, direct information warfare enables one to change or create
information without relying on observation and interpretation. For example, through information
attack, a pseudo combat wing may be created directly in the adversary's store of information
without the manipulation of sources that rely on effective transmission of the altered information.
Theoretically, the result — deception — is precisely the same. This makes direct IW an attractive
alternative to indirect IW because comparable, and potentially more reliable, results may be
achieved with the additional advantage of reductions in the resources, time, and uncertainty
associated with the process. The direct approach to IW is a targeted approach that can be
considered “information attack.” Direct IW specifically targets the information with the intent of

producing deception. Specifically,

¢ Information attack consists of directly corrupting information without visibly
changing the physical entity in which it resides. Thus, information attack is the

direct alteration of data or instructions.
OODA LOOPS
The most frequently cited theoretical construct in the IW literature is the OODA Loop

(Figure 1), a cyclical model unifying the perceptual, cognitive, and active factors involved in

decision making (Boyd, 1987).




OBSERVE

DECIDE

Figure 1. The four phases of the OODA Loop.

The OODA Loop illustrates the practical payoff of information dominance: the ability to act and
react in an informed, knowledgeable manner more rapidly than the adversary. Achieving this
advantage is considered operating within the enemy's decision cycle or OODA Loop. The
following paragraphs describe the four individual phases comprising a unit OODA Loop with

respect to an individual subject.

In the Observe (O) phase of an OODA Loop, the subject, operating within his/her role,
engages phenomena in the environment within which he/she pursues the process. Observation
consists of the subject's transformation of phenomena into a set of data. The Observe phase

concludes when the subject begins integrating this data into his/her knowledge base.

In the Orient (O) phase of an OODA Loop, the subject, operating within his/her role,
engages data deriving from observation. Orientation consists of distilling information from the
data stream and integrating that information along with prior facts into a coherent state of
situational knowledge. The Orient phase concludes at the point that the subject achieves this
coherent state. Note that the criterion for completion of the Orient phase is a “coherence” of

situational knowledge, not a “completeness” or “accuracy” of situational knowledge.

In the Decide (D) phase of an OODA Loop, the subject, operating within his/her role,
engages situational knowledge deriving from orientation. Decision consists of evaluating this

situational knowledge, projecting its ramifications for the process, focusing on a set of chosen




ramifications, and selecting actions appropriate to that focus. The Decide phase concludes when

the subject moves from reflection on to enactment of the selected plan.

In the Act (A) phase of the OODA Loop, the subject, operating within his/her role,
engages the environment with respect to the plan derived from the Decision phase. Action
consists of transforming the abstract plan into instrumental behavior. The Act phase concludes
when the subject completes or interrupts realization of the plan and begins observing the newly-

changed state of the environment.

Several key features of the OODA Loop enhance its utility in human factors IW
research. First, it explicitly identifies the decision cycle as a continuous process from perception
(Observe) through cognition (Orient / Decide) to response (Act). The following points are
introduced to qualify the abstract OODA model in preparation for its application to actual

systems:

1) There is no presumption that an OODA Loop, once begun, will necessarily be
completed.

2) Precise delineation of transitions from one phase to the next may appear context- or
situation-dependent. As such, there may be variations among mappings of specific event
behavior sequences onto the O-O-D-A phase sequence.

3) The boundaries between the four phases are not necessarily crisp. In other words,
activities may take place in the Observe phase and continue into the early stages of the

Orient phase.

The OODA model concentrates on the pattern and course of activities in an operational domain.
This focus fits the scope and form of the issues in IW. Generally, applying an OODA approach
is justified by the following: The OODA model prioritizes action over artifacts. The OODA
model is a tool for addressing decision processes such as C4ISR, defined as “...the planning,
tasking, and control of the execution of missions through an architecture of sensors,
communications, automation, and intelligence support” (Widnall & Fogleman, 1995). The

OODA model prioritizes practical theory over theories of practice.




UNCERTAINTY IN INFORMATION WARFARE

Three Types of Uncertainty

Uncertainty in problem solving situations may result from information deficiency, poor
instruction, or an inability to discriminate among alternatives. This is particularly likely if the
information is incomplete, fragmented, contradictory, unreliable, or vague. All of these concepts
are most appropriately measured qualitatively; however, the most accepted techniques to manage
uncertainty are quantitative (i.e., probability). Nonetheless, if reliable qualitative or quantitative
measures of uncertainty are available, the amount of uncertainty in a problem solving situation

may be reduced.

In the theater of operations, uncertainty can arise from limitations in sensor
measurements and coverage. Uncertainty also results from conflicting reports produced by a
variety of intelligence sources. The commander may also have problems with the “fog of war”
and be unable to make certain decisions in the time needed due to numerous permissible courses
of action. These types of uncertainty and others have made fuzzy modeling a useful tool for

representing military decision making (Cisneros et al., 1995).

Three major types of uncertainty include nonspecificity (or imprecision), which is
connected with sizes (cardinalities) of relevant sets of alternatives; fuzziness (or vagueness),
which results from imprecise boundaries of fuzzy sets; and strife (or discord/strife), which
involves conflicts among alternatives. Both nonspecificity and strife are subsets of a higher
category of uncertainty, ambiguity. Ambiguity is associated with any situation in which there are
numerous alternatives with no clear “best choice.” Table 1 details the uncertainty measures

based on fuzzy logic used in this study and the type of uncertainty each measure represents.

Table 1
Types of Fuzzy Uncertainty Classified in Evidence Accrual

Uncertainty Measure Uncertainty Type
Hartley Function Nonspecificity
Fuzzy Union Discord/Strife
Hamming Distance Fuzziness

6
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Current Methods of Dealing with Uncertainty in Decision Support

Probabflities, fuzzy variables, and probability intervals are all used to represent the

uncertainty associated with information used in decision making. The theoretical basis for crisp

traditional methods such as fuzzy set theory.

approaches to managing uncertainty is supported by a rich history of mathematical foundations.
This, however, does not mean that more progressive approaches with less theoretical support are
not capable of producing comparable results. The willingness to utilize these approaches has
been primarily built on a basis of empirical and experiential activities. One drawback in theory

acceptance in some decision making environments has been the lack of rigorous theory in non-

Currently, the Bayesian Combination Model and the Dempster-Shafer Model are among
the most widely used approaches to the management of uncertainty in human decision making.
As depicted in Figures 2 and 3, both models consist of numerical combination algorithms that
merge multiple hypothesis data vectors from N sensors. The sensors include statistical classifiers
that classify measured features into a vector of parameters. These parameters quantify the
certainty (likelihood, degree of fit, etc.) that the measurements represent each hypothesis. For
the Bayesian Combination Model, portrayed in Figure 2, the parameters are forward-conditional
probabilities. Bayes’ rule is used to derive a composite a posteriori probability. A decision rule,

such as the maximum a posteriori (MAP), is then applied to select the most likely hypothesis.

A Posteriori
Probability
Vector

Decision
Rule

—» P,

Bayesian Combination Model
__Pl —
Sensor P,
Classifier 1 ] .
P = Bayes’
T p 7] Rul
Sensor -, :‘ > e
Classifier 2 2
PI’I

Waltz & Buede, 1986).

Figure 2. Bayesian Combination Model of sensory uncertainty management (adapted from




The alternative Dempster-Shafer Model, represented in Figure 3, uses probability
intervals to describe sensor data. The Dempster-Shafer Model of uncertainty, proposed by
Dempster and modified by Shafer (1976), attempts to distinguish between ignorance and

uncertainty. This model permits:

P(A) + P(B) <1 (1]

where P(A) and P(B) represent the strength of evidence or confidence

. Dempster-Shafer Model

Plausibility
b s | 4 Supportability
[p,s, | Interval Vectors

Sensor Py S, P. S
Classifier 1[ > . l L Decisi
: ecision
Py, Sy Dempsters’ —> P Sz
P

— - »! P, S
P, | Rules T Rule
Sensor - P’SZ K,
Classifier 2 2 K,
P, S, ..
LT K. | ™ Normalization (degree

of conflict) Vector

Figure 3. Dempster-Shafer Model of sensory uncertainty management,

Based on identifying the believability of a function or proposition, the function f
represents the measure of belief committed to a given proposition or piece of sensory

information.

Each hypothesis is represented by two parameters:

1) supportability (0 < S(X) <1) [2]

which describes the degree to which measurements support the hypothesis and

2) plausibility (0 < P(X) < 1) [3]

which represents the degree to which the evidence fails to refute the hypothesis.




" The difference between plausibility and supportability is measure of ignorance about the

hypothesis: D(I) = P(x) - S(x). [4]

When P(x) = S(x), the probability interval collapses to a single probability equivalent to

a forward conditional probability.

Dempster’s rule of combination, analogous to Bayes’ rule, provides a means of
computing composite supportability/plausibility intervals (credibility intervals) for each
hypothesis, reducing the uncertainty in the measured data. An appropriate decision rule is then

-~ -l

applied on the basis of both supportability and plausibility.

Top Level Model of Evidence Accrual Using Fuzzy Logic

Fuzzy set theory is a viable alternative to the management of uncertainty in military
decision-making environments that may produce a more realistic approach because linguistic
values can be directly incorporated into this technique. A variety of approaches to data fusion
and uncertainty management were explored (Llinas, 1996, Waltz & Buede, 1986). The
developed methodology utilized for fuzzy management of uncertainty in this evidence accrual
approach modifies data fusion frameworks established by Waltz and Buede (1986) to model the
information processing flow. The methodology divides the processing of information received
from the sensor into three stages, where each stage has a mechanism for representing the

components’ uncertainty.

Stage 1 begins in the Observe Phase of the OODA Loop upon receipt of the sensor
information from various classifiers. In Stage 2, the three measures of uncertainty are
determined from the fuzzy rule base and aggregated to produce three categorical measures of
uncertainty. This is related to the Orient Phase where the operator is attempting to attach
significance to the information in order to make a decision. The uncertainty at this phase will
again be evaluated. Stage 3 is the development of the overall measure of uncertainty and is an
aggregation of the three individual measures of uncertainty. The aggregation technique involves

two stages of fuzzy rules.




Stage 1.

It is assumed that this model operates in discrete time increments and that the sensor classifiers
will provide an output, S;, whose value represents the measure of significance, or value, of the
associated sensory information in making the required decision. This value is obtained for each
individual piece of information. Each individual piece of information, S,, will then be assigned a
membership value, p, (0 < p, < 1) that is used to represent the uncertainty associated with the
information. This membership value will be a function of the Likelihood of Deceptibility
(LOD). The LOD is a matrix which considers the likelihood that a piece of information is
contaminated or its vulnerability to adversaries. The determination of LOD is based on the
vulnerability of an information source as well as the medium through which it is transmitted.
The basis of these linguistic assignments is extensive literature analysis and knowledge
acquisition with military experts. An abbreviated example of the LOD is illustrated in Table 2.

The vulnerability is measured qualitatively and takes the following factors into consideration:

e amount of information received

e type of information received: voice, record, data

e source of information: intelligence, acoustic, radar

¢ frequency of information

e situational awareness, which will be a sub-category for each combination of types of
information and sources, is a function of environmental characteristics: high intensity

environment, moderate intensity, and low intensity.

The linguistic category’s values used to represent the likelihood that the information is

deceptive include the following:

e Not likely to be deceptive (NL)

¢ Somewhat likely to be deceptive (SWL)
e Likely to be deceptive (L)

e Very Likely to be deceptive (VL)

e Extremely Likely to be deceptive (EL)

10




Subjective assignments have been made to each combination based on interaction with experts

and literature analyses.

Table 2.
Level of Deceptibility (LOD) Matrix Vulnerability of Information
Type of Information Received
Voice/ Recorded Alphanumeric | Dynamic
Interactive Text Database or
Knowledge
Base

Intelligence

High Intensity SWL VL VL EL

Moderate Intensity L VL VL VL

Low Intensity NL L VL VL
Electronic Intelligence

High Intensity SWL ' EL EL EL

Moderate Intensity L VL VL EL

Low Intensity L VL VL EL
Acoustic

High Intensity SWL VL N/A VL

Moderate Intensity NL VL N/A

Low Intensity NL L N/A
Radar

High Intensity N/A EL VL EL

Moderate Intensity N/A EL VL VL

Low Intensity N/A VL L VL

In Stage 1 of the model, these linguistic values are aggregated in order to produce a
measure of uncertainty associated with each measure. The aggregation technique takes the form
of a weighted sum where the products are the weights and the measures of uncertainty.

Specifically, the weights are the respective “values™ of the piece of information, as determined

11




from a pre-defined set of rules, times the uncertainty measure, which is a function of previously

mentioned factors.

Stage 2.

The membership values will then be utilized by a fuzzy rule engine and persistent knowledge
base to analyze, evaluate, and aggregate the membership values of the individual pieces of
information with respect to the uncertainty associated with each. There will be two high level
sets of fuzzy rules. One will determine via an a-cutoff if the information has a value that will be
useful to the situation assessment function. The second level will then be used to determine the

values of the three types of uncertainty associated with each piece of information.

u,S — —_ . .
bl U, s, | < Nonspecificit
Sensor uy, S, U. s
Classifier 1 ] . HC I —
u,S, F : Decision Ui S
: : uzzy : Un’ sn Rule 1,01
Sensor Mo Si » Rules :D s, 7]
[ 1,Y1
Classifier 2 U2 5, D, S,
uﬂ’ Sn - -
L™ | D Si | =< Discord
F,, S,
F,, S, .
| ¢ Fuzziness
F.S

Figure 4. Top level model of evidence accrual representing three types of uncertainty.

The output from this stage will be vectors for nonspecificity, discord/strife, and fuzziness.

Mathematically this will be represented by:

Nonspecificity = V; = [U}, Uy, ...U,]. This uncertainty, which is characterized by two or
more unspecified alternatives, results from variety, generality, diversity, equivocation, and
imprecision. This component of the model is a necessary aspect of the uncertainty measure

because it provides an assessment of the set with respect to the total information received. In this

12




case the function U defined as the Hartley function provides a unique approach to measure

uncertainty associated with sets of alternatives (Klir & Yuan, 1995). For any non-empty fuzzy

set A defined on a finite universal set X, the generalized Hartley function has the form

Uy = —— [ |* Als [5]
DGy b 108, A

Where l“ AI denotes the cardinality of the & —cut of A and h(4) is the height of 4. Observe
that U(4) , which measures nonspecificity of A, is a weighted average of values of the Hartley
function for all distinct & — cut of the normalized counterpart of A, defined by A(x)/A( A) for

all x e X. Each weight is a difference between the values of o if a given a-cut and the

immediately preceding a-cut.

For any A, B € 3(X) —{J}, [6]
if A(x)/h(4) = B(x)/h(B)
forallxe X,

thenU(A) = U(B).

That is, fuzzy sets that are equal when normalized have the same nonspecificity
measured by function U. This operation will produce a fuzzy measure representing

nonspecificity in this stage of the model.

Discord/strife = W; = [Dy, D,, ...D,]. This type of uncertainty is characterized by
disagreement in choosing among alternatives and results from dissonance, incongruity,
discrepancy, and conflict. Although numerous approaches exist to obtain fuzzy unions (Yager,
1980), this value will be obtained by taking the general form of the union that takes the largest
membership value contained within the set to represent the union. This yields the resulting
maximal value of uncertainty from all the membership values, thus allowing this value to

represent the level of discord/strife or uncertainty for the given set of sensor characteristics.

13




Fuzziness = X; = [F\, F,, ...F,]. This type of uncertainty is characterized by the absence
of definite or sharp distinctions among alternatives. It can result from vagueness, cloudiness, or
haziness as well as a lack of clarity, distinctness, or sharpness. Fuzziness will be obtained by
using the Hamming Distance. The selected method for measuring fuzziness is to view the
fuzziness of a set in terms of the lack of distinction between the set and its complement. This
lack of distinction between the sets and their complements is the very factor that distinguishes
fuzzy sets from crisp sets. The less a set differs from }ts complement, the fuzzier it is. In

general, a measure of fuzziness is a function:

f:3(X) >R [7]

where 3(X) denotes the set of all fuzzy subsets of X (fuzzy power set).

For each fuzzy set A, this function assigns a nonnegative real number f(4) that

expresses the degree to which the boundary of A is not sharp. To qualify as a sensible measure
of fuzziness, function f must satisfy some requirements that adequately capture our intuitive
comprehension of the degree of fuzziness (in this case, degree of belief). The following three

requirements are essential:

1. f(A)=0iff A is a crisp set;

2. f(A) attains its maximum iff A(x) = 0.5 for xeX, which is intuitively conceived as the
highest fuzziness;

3. f(A) <f(B) when set A is undoubtedly sharper than set B, which according to our
intuition, means that A(x) < B(x) when B(x) < 0.5, and, A(x) > B(x) when B(x) > 0.5, for
all xeX.

The Hamming distance is defined by the sum of absolute values of differences.

Choosing the Hamming distance, the local distinction (one for each xe X) of a given set A and its

complement is measured by

|A(x) - (1- A(x)| =[24(x) -1

, (8]

14




and the lack of local distinction is measured by

1-]24(x)-1. [9]

The measure of fuzziness f(A) is then obtained by adding all local measurements:

F() =2 0-PAaE) -1 [10]
xeX
Stage 3.
In this stage an overall measure of uncertainty for the information received will be provided
again based on the current state of information, as reflected in the persistent knowledge base and

the uncertainty values. The entire model is illustrated in Figure 5. Mathematically this is

represented as:

Overall measure of uncertainty = Qi (T) = [(Vi) °(Wi) ° (Xi)] [11]
where © represents the enactment of an operation selected from a variety of operations
for obtaining the measure of uncertainty. At this stage of the project the ° has been used

to represent the union (U), or max, of these fuzzy values.

S
Nonspecificity
Sy
Knowledge Strife Overall
Base* Uncertainty
S
Discord
S4
Stage 1 Stage 2 Stage 3

*LOD is considered in the Knowledge Base

F, iguré 5. Three stages of the uncertainty model.
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This overall measure of uncertainty will be a crisp output for use by the situation
assessment modules in the detailed decomposition model in Figure 6. Figure 6 illustrates the
developed model in conjunction with existing intelligent techniques used in modeling the combat
environment. It should be noted that the situation assessment component of the model, though
considered briefly in this case, is a highly complex environment and a variety of techniques are
available to model situational awareness (Egan, 1990). This model does not attempt to fully
represent the situational awareness aspects but rather will be complementary to an existing

methodology for modeling situational awareness in the combat environment.

Sensor
/ Data
o —| Sensor - Data . Combination Situation
 Combat Association and
> Environment Reasoning Assessment
u| Sensor
Network
Value Fuzzy Measure of 3 Aggregated
& membership Rule types of measure of
function u; Base uncertainty uncertainty

Figure 6. Detailed decomposition of Fuzzy Uncertainty Measurement Model.
Discussion
It is envisioned that the fuzzy uncertainty measure model will run in parallel with
existing IW models and modules as shown in Figure 6. The fuzzy system will utilize the same

data as the existing model. It will be processed off-line and then returned to the situation

assessment and decision making models in a crisp output for their use. This type of model will
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lend itself to reuse as it is not an embedded model and therefore can be used in other models as

required.

The situational database, or persistent knowledge base, is envisioned as a theoretically
omnipotent, holistic representation of the mission space. The aggregated values of information
will be maintained here for comparison with new incoming pieces of information. The fuzzy rule
base will be used to determine if the information piece content value meets the a-cut off
requirements of existing knowledge and whether it adds to the value of the overall information
picture. The uncertainty of the information will be obtained by mathematically determining the

value of the piece of information with respect to the overall information picture.

INTELLIGENCE ANALYST EXAMPLE

One example of the application of the Fuzzy Logic Evidence Accrual Model can be seen
in the activities of an Air Force intelligence analyst during a Joint Theater level campaign. The
intelligence analyst monitors streams of data as they emerge from the theater of war in the naval,
air, and ground arenas to assess the offensive and defensive picture for the Air Force’s Tactical
Air Warfare operations. Sources of information include intelligence, national sources, pre-flight
intelligence, and tactical data links. Many types of sensors are employed. Targets of importance
to the analyst are aircraft and missiles. Events in which these targets are involved include

aircraft maneuvers, missile engagements, and electronic countermeasures (jamming).

An expert at the opposing force’s tactical doctrine, the analyst has assembled a bird’s eye
view of the Theater of War complete with positioning of the forces and the battle plan for
friendly forces. In response to each incoming new piece of information, the analyst must decide
whether it requires reporting to the Joint Force Air Component Commander (JFACC), who
controls the Air Warfare assets. Table 3 demonstrates the arrival and processing for each piece

of information, as processed by the fuzzy logic model.
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Table 3
Example Analysis

Information Received

Processing

Uncertainty Measure

Missile Engagement

Current report, from known target
area, successfully destroyed
opposing target of air-defense
position

This information appears to have no
uncertainty associated with it and does
not appear to be in conflict with existing
information

Troop Movement

Days old report, unknown source,
small number of opposing force
movement in area not previously
targeted, north of current air
operations area

Nonspecificity: moderate
Discord/strife: moderate

Fuzziness: moderate

IFF Report Current report, small number of | Nonspecificity: moderate
additional friendly force aircraft
in current air operations area, no | Discord/strife: high
air operations order for such
activity Fuzziness: moderate
Radar Report Reliable source indicating small | Nonspecificity: high

numbers of opposing force
aircraft moving south of current
air operations area

Discord/strife: high

Fuzziness: high

Visual Sighting

Civilian report sighting of large
numbers of aircraft to the south
of current air operations area

Nonspecificity: moderate
Discord/strife: moderate

Fuzziness: moderate

Airborne Surveillance
Report

Timely and reliable report from
AWACS plane indicating
opposing force aircraft carrier
task force moving south

Nonspecificity: low
Discord/strife: low

Fuzziness: moderate

The linguistic values are obtained by categorizing the ranges of the membership function. These

linguistic values are obtained for the purpose of conveying the state of the system in layman’s

terms as well as being useful in the persistent knowledge base. To understand the numeric

implications of this problem, Table 4 hypothetically assigns values for the uncertainty and

significance of each input.
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Table 4

Stages of the Example Problem

Information | Stage 1 Stage 2 Stage 3
Received (Value and Three Fuzzy Measures Overall Determination of
Uncertainty of Obtained Uncertainty Level
Information)
Missile Y1, ) (V1) - nonspecificity Qi (M=[(V) °(W)° (X)]
Engagement where Y;, - represents
the value of the (W)) -discord/strife The operation is performed on
information conveyed by the three measures of
this sensor ( X))- fuzziness uncertainty to obtain an overall
w - represents the measure of uncertainty for the
uncertainty associated Mathematical operations are given sensor.
with this sensor’s performed as outlined in
information previous sections to obtain
numeric value for each of these
types of uncertainty
Troop (Ya, 12) (V) - nonspecificity Q:; (D) =[(V,) (W) ° (Xy)]
Movement
(W,) -discord/strife
( X,)- fuzziness
IFF Report | (Y3, pa) (V3) - nonspecificity Qs(T)=[(V3) °(W3)° (X3)]
(W3) -discord/strife
( X3)- fuzziness
Radar Report | (Y4, ps) (V) - nonspecificity Qe (D =[(Va) A(Wa)° (Xy)]
(W,) -discord/strife
( X4)- fuzziness
Visual (Ys, ps) (Vs) - nonspecificity Qs (T)=[(Vs) °(Ws)° (X9)]
Sighting
(W5) -discord/strife
( X5)- fuzziness
Airborne (Ys, He) (V) - nonspecificity Qs (T) =[(Vs) °(Ws) ° (Xe)]
Surveillance
Report (We) -discord/strife

( X¢)- fuzziness
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However, in order to categorize the results obtained in the mathematical equations detailed for
the three levels of uncertainty, a quantitative to qualitative approach is needed. Thus, the
quantitative values in Table 5 are used to assign a linguistic value to the numeric outputs. In
order to aggregate the overall uncertainty of the system, a weighted sum of the individual sensors

values, Yi, times the overall uncertainty, Q; (T), is proposed.

Table 5
Categorization of Crisp Outputs
Range of Final Crisp Output Linguistic Category
0.0-.10 minimal
A1-30 low
31-.50 moderate
S51-.70 high
>.71 very high
CONCLUSION

This study demonstrates a first attempt at the incorporation of fuzzy set theory in
evidence accrual. This model should be extended to a variety of environments and interwoven
with existing techniques for management of uncertainty in this arena. The project was successful
in analyzing and characterizing the factors which take place in evidence accrual through an
evaluation of the first two phases of the OODA loop. While the model is theoretically sound, the
absence of data for the purpose of fully evaluating the model minimized the ability to evaluate
the methodology. Upon the availability of this data, the aggregation techniques and alternative

aggregation approaches may be evaluated.
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APPENDIX
OVERVIEW OF FUZZY SET THEORY

Numeric Basis of FST

A fuzzy set is a class of objects with a continuum of grades of membership defined for a
given interval. Such a set is characterized by a membership function that assigns a degree of
membership ranging between zero and one to each object. To understand the mathematical

definition of fuzzy sets, consider a finite set of objects X.

1) Define the finite set as

X=x1,x2,..., X, [12]

where xj are elements in the set X. Each element, xj, has a particular
membership value, p, which represents its grade of membership in a fuzzy set

(Badiru, 1992). The set of membership values associated with the fuzzy set
occur along the continuum [0,1]. A fuzzy set A can thus be represented as a

linear combination of the following form:

A= (X)), (%), -, p(X,). [13]

A fuzzy set could also be expressed as a vector, a table, or a standard function
whose parameters can be adjusted to fit a given system. The interval over which
a fuzzy set applies, known as a universe of discourse U, is thus characterized by

a membership function which associates each element x; of X with a degree of

membership L.

2) The membership values, p;, of each element in the fuzzy set A may be

normalized such that they all are represented by values over a desired range. In
fuzzy sets this typically means representing the potential outcomes of the
elements over the interval [0,1]. A fuzzy set is considered 'normal’ if the

maximum value of the elements, g, is 1 and the minimum value 4; is 0.
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3) Concentration

eon(W)=( pia(w))’

4) Dilation
Han (W=( pa(w)"*

Based on the previous numerical basis for a fuzzy set, a graphical representation is

created to further illustrate the progression of the set from one state to another.

To understand the mathematical definition of fuzzy sets, consider a set of objects A defined

over a sample space X.

1) Consider a finite set defined as

X= X1y X2seees Xn

where the grade of membership of x; in A is defined over the interval [0,1]. Each
element will have a particular membership value y; (Badiru, 1992). A membership
function may be expressed as a vector, a table, or a standard function whose
parameters can be adjusted to fit a given system. Given the membership values, ;,
the set A can be represented as a fuzzy set with the linear combination of the

following:

A = pu(xr) By(x2) - -0 H,(x0)

Thus, a fuzzy set A of a universe of discourse U, is characterized by a membership
function which associates each element x; of X with a degree of membership (u;).

A fuzzy set A is considered as the union of its constituent singletons (King, 1988).
2) Normalization of a set simply means normalizing the values of the outcomes

such that they are all represented over a desired range. In fuzzy sets this typically

means representing the potential outcomes on the interval [0.1]. Thus, all potential
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values of the set occur over the interval [0,1]. A fuzzy set A is normal if the

maximum value of the membership function, p(x) = 1.

3) Two fuizy sets are said to be equal if, and only if, for any x in U,

U a(x) = pg(x) [16]

Fuzzy sets share many of the properties of conventional sets. Some of these properties that apply

to fuzzy sets include the following (Badiru, 1992):

Equality:
A =B iff u,x) = pyx) VxeX [17]
Containment:
AcC Biff p,(x) < pp(x), VxeX [18]
Intersection:
Hanp™®) = mine [4(%), pzx)] 9]
Union:
Haop(®) = maxe [p,(%), pp(x)] [20]
Complement:
py ()= 1-11,(x) [21]

These operations on fuzzy sets are very similar to standard sets. Other operation properties
which hold for fuzzy sets include the commutative, distributive, associative, and idempotence

properties, as well as De Morgan's Law.
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Commutative Property:

AuUuB=BuUA4

AnNnB=BnA4

Distributive Property:
AU BNC=(AUB)N(ANC)
ANB v C) = (A n Bu(4An(C))
Associative Property:
AuVvBuC=4v BuUl)
ANB NC=4ANBNO)
Idempotence Property:
ANA=4
Aud=4
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De Morgan's Law:

Hunpy x) = Koy (x) [30]

oy () = By gy (%) [31]

These operations become very important when attempting to manipulate fuzzy sets, particularly

when two or more sets are involved.
Fuzziness vs. Probability

The proponents of fuzzy set theory must deal with a fundamental issue: with probability
theory available to characterize uncertainty, what is the added utility of fuzzy set theory?
Although randomness and fuzziness share many similarities, they have fundamental differences
which set them apart. Both systems describe uncertainty with numbers in the unit interval [0,1].
Thus, both systems numerically represent uncertainty. Both systems also combine sets and

propositions associatively, commutatively, and distributively.

A key distinction, however, is how the systems jointly treat a set A and its complement.

Classical set theory states that the intersection of a set A and its complement AC s the null set.

This is represented as:

ANnA =0 [32]
and by probability theory:
P(A N A°) = P(@) = 0. v [33]

Fuzzy set theory, however, states that the intersection of a set A and its complement AC can have

events in common. This is represented as:

AN At 20, [34]
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For example, consider a fuzzy set A {1,2,3,4,5}, which contains a set of numbers which are close

to the number 5.
A:{3/0.5,4/0.8,5/1}.

Each element has a particular membership value which represents its grade of membership in the

fuzzy set A (i.e., the membership grade of the number 3 is 0.5, of 4 is 0.8, and of 5 is 1). The

A®:{3/0.3,2/0.5,1/0.7}.

complement of A, AC, contains a set of numbers which are not close to 5.

In traditional set theory the numbers 3, 4, and 5 could not be a member of the set AC

since they are in the set A. Note, however, that in the above example both sets A and AC

contain the number 3. The number 3 belongs to the set A with a membership grade of 0.5 and to

the set AC with a membership grade of 0.3. Thus, there is a distinct difference in what the

numeric values for fuzzy sets and probabilistic sets are capable of representing.

In order to understand fuzziness as an alternative to randomness for describing
uncertainty, consider the following. Fuzziness describes event ambiguity. It measures the degree
to which an event occurs, not whether it occurs. Randomness, on the other hand, describes the
uncertainty of event occurrence. Thus, whether or not an event occurs is “randomness” and the
degree to which it occurs is “fuzziness.” For example, the uncertainty associated with the
outcome for a roll of a die has a certain probability associated with it. This event does not
represent ambiguity but rather uncertainty of event occurrence. Once the die is rolled the need
for the probability due to the lack of knowledge concerning the future outcome dissipates. Now
consider the term fall when used to describe the height of a man. The ambiguity associated with
this event lies in differentiating where tall begins and ends - -or the degree to which the person is
tall. This type of ambiguity is characteristic of fuzziness because there does not exist a specific
height at which we consider a person to be tall or not tall. Instead there is a progression which is
more appropriately represented by linguistic terms (i.e. tall, somewhat tall, not tall). Thus, in

contrast to the probabilistic representation of uncertainty, no addition of information is useful in
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removing the ambiguity associated with the boundaries for describing the variables tall and not

tall. It is in such situations that the concept of fuzziness becomes useful.

Mapping Functions

Not all phenomenon can be represented by fuzzy sets. In ordinary (i.e., crisp) subsets, a
phenomenon is represented by a characteristic function. The characteristic function is associated

with a set, S, which is represented as a binary mapping function
MU X —[0.1]
such that for any element x in the universe, y73 (x)=1if x is a member of S and ‘uv (x)=0ifxis

not a member of S.

In order to be 'fuzzified', the real world characteristics of a phenomenon must be able to
be mapped to a fuzzy mapping function. The goal of this function is to map a subjective and
ambiguous real world phenomenon, X, into a membership domain, for example, [0,1]. This
mapping function is a graphical representation of an element as it passes throughout a continuous
(i.e., non-binary) set of potential membership values. In other words, the mapping function
provides a means to view the progression of the changes in the state of a given variable. Thus,
this representation is referred to as a membership function for the fuzzy set. The term
“membership function” emphasizes the previously stated premise of fuzzy sets: for a fuzzy set
A, each x value within the set has an associated z(x) value that indicates the degree to which x is

a member of the set A.

Membership functions are a characteristic of the data set under analysis and can take on
many forms. Several geometric mapping functions have been developed, including S, =,
trapezoidal, and triangular shaped functions. All of these functions have utility in characterizing
the environments of particular systems and could fill the remaining chapters in this book (Cox,
1994). Sinusoidal mapping functions, which include the S and n shapes (Gupta et al, 1988), are
the most frequently implemented. They are thus the functions focused on in this review. These

two particular classes of sinusoidal functions are discussed below.

29




For all S and m mapping functions discussed below, consider the fuzzy phenomenon X,

defined over a real (i.e., non-negative) interval [Xp, XM, where x; and x)\ correspond to the

lower and upper bounds of the set X, respectively.

S (sigmoid/logistic) mapping functions.

These mapping functions are termed “S” because they are shaped much like the letter S. The
curves that comprise the S Mapping functions may be referred to as growth and decline curves
(Cox, 1994). The growth S-curve set moves from no membership at its extreme left-hand side, to
complete membership at its extreme right hand side. The decline S-Curve behaves in just the
opposite manner, beginning with complete membership at its extreme left-hand side, and

progressing to zero membership at it’s extreme right hand side.

There are three types of S mapping functions: Sj, So, and S3. Each of these functions

has utility in the representation of fuzzy elements.

S| Mapping Functions. The mapping function Sy maps xj (xy; <xj < x)Mf) into a non-

symmetric sinusoidal membership function.

S2 Mapping Functions. For the Sy sinusoidal mapping function a symmetrical crossover

point x¢ is defined as follows:

x, = 1/(x, + xy) [35]

The mapping function S7 assigns low fuzzy set membership values to points below the crossover
point [xj <xg; i.e., 0.0 <xj <0.5] and higher membership values to points above the crossover

point [x; > x¢; i.e., 0.5<x; < 1.0].

7t mapping functions.

The © mapping functions are so named because they approximately simulate the shape of the

Greek letter . For this mapping function, the symmetrical point xg is defined as the mid-point

of the interval [xp, XM],
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X, = 1/(x, +xy) [36]

and the lower and upper crossover points are both defined as:

Xg = 1/(x, +Xx,) [37]

The n mapping function is a convex function which increases monotonically from 0 to 1 over the

interval [xm, Xs] and decreases monotonically from 1 to 0 over the interval [xg, xpM]. At the

crossover points, X¢1 and x¢2, the value of the function is 0.5.

The = shaped mapping function is the preferred and generally the default method of
representing a fuzzy variable (Cox, 1994). This is because this method of representation allows a
gradual descent from complete membership for a number in both directions, thus representing the
concept of approximation. The symmetric © curve is centered on a single value and as the curve
moves away from the ideal value (value with complete membership), the degrees of membership

begin to taper off until the curve reaches a point of no membership, where n= 0.

Linear membership functions.

In cases where the universe of discourse X is a real line, the fuzzy set can be expressed as a line
or as some functional form. Two primary types of linear membership functions include the
triangular and trapezoidal membership functions. The linear membership function is perhaps the
simplest membership function and is often used as a starting point when initially constructing
membership functions. The construction of this curve often leads to more sophisticated linear
membership functions and even to non-linear membership functions. Triangular shaped
membership functions are used to represent relationships that are expected to be linear with a
suspected optimal point or value and symmetry about this optimal point. This membership
function is constructed under the same premise as the n shaped membership function: as the
value moves bilaterally away from the suspected optimal point, the degrees of membership begin

to decrease until the value of no membership (1= 0) is reached at each end of the function.
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As with the triangular shaped membership functions, the trapezoidal membership
function is used to represent a set that is expected to exhibit a linear relationship. In this
instance, there is not an optimal point or value which has complete membership. Rather, there is
a range of values which have complete membership in the set. Fuzzy sets may also take on a
combination of triangular and trapezoidal membership functions. For instance, in process control
systems variables are decomposed into overlapping arrays of triangular shaped membership
functions. The endpoints of these variables represent regions that begin and end in complete
membership for a given set. These outer membership functions are often expressed as

“shouldered” sets (Cox, 1994) and they appear as bisected trapezoids.

The development of an appropriate membership function is critical for effective
representation and modeling of a fuzzy set. It is generally possible to represent virtually any
domain through a membership function because such functions may take on a variety of different
shapes and forms to accommodate a given data set. Irregular and unique shaped membership
functions can also be developed to represent a fuzzy set in unusual cases. The previously
mentioned membership functions, however, will be useful at graphically representing most fuzzy

sets.
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ATO
ECM

JFACC
LOD
MAP
OODA

GLOSSARY

Air Tasking Order

Electronic Countermeasures
Information Warfare

Joint Force Air Component Commander
Likelihood of Deceptibility

Maximum A Posteriori

Observe-Orient-Decide-Act
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